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INFINITY IN MATHEMATICS 

A brief introduction  

 
Infinite sets have not been object of systematic researches by mathematicians until middle 19

th
 

century. This fact is due to the difficulty in handling this subject without falling into paradoxes and 

contradictions. For instance, it’s difficult to define how to compare two different infinities. We can 

consider the Galileo’s paradox wondering whether natural numbers (0, 1, 2, 3…) are more 

numerous than their squares (0, 1, 4, 9…). At first sight, we should conclude natural numbers are 

“more numerous” than perfect squares (or than even numbers, or integer multiples of some natural 

number, or prime numbers etc…), since there are an infinity of natural numbers which are not 

square numbers. However, Galileo points out that each natural number corresponds to only one 

square number and vice-versa, according to a biunivocal (i.e. one-to-one) correspondance: 

 

0 1 2 3 4 5 6 7 8 9 

0 1 4 9 16 25 36 49 64 81 

 

Now, two finite sets in one-to-one correspondence have the same number of elements. By extending 

this criterion to infinite sets we should conclude that natural numbers aren’t more numerous than 

the perfect squares or the even numbers etc., contrary to the Aristothelic principle according which 

the whole is greater than a part.  

 

There are paradoxes even in Geometry. For example, consider two unequal segments. It seems the 

longer one contains more points than the shorter. But trace from an external point some straight 

lines intersecting both of them as follows: 

 
As we can see, each point of the shorter segment corresponds to one and only one point of the 

longer, therefore now it seems both segments contain the same number of points. 

 

Such paradoxes and the difficulties involved in defining coherently the concept of infinite quantity 

induced mathematicians to employ the notion of infinity the less possible, until the German 

mathematician G. Cantor, in the second half of 19
th
 century, developed a first set theory by which 

to handle coherently the problem of mathematical infinity. Cantor started from the concept of set as 

a collection of distinct objects and defined “infinite set” every set which can be put in an one-to-one 

correspondence with an its proper subset i.e. a subset non-containing all the objects belonging to 

the set itself (such a definition seems strange, but in set theory every set is a subset of itself). For  

instance, { 2 , 6 , 7 , 10 } is a “proper subset” of  { 1 , 2 , 4 , 6 , 7 , 10 }. Evidently, the number 

of elements belonging to a proper subject of a given finite set  I  is always strictly less than the 

number of elements belonging to  I . But for deciding if two infinite sets have the same number of 

elements (in Maths, it is said they “are idempotent” or “have same cardinality”) we must define 

once and for all what “to have the same number of elements” means, so avoiding ambiguities and 

contradictions. The Cantor’s definition is that two sets have the same number of members if it is 

possible establish an one-to-one correspondence between the elements of  A and those of  B, so the 

number of naturals and the number of even numbers are the same. But the set of the even numbers 

is a proper subset of the set of the natural numbers, therefore the whole set and a proper infinite 

subset can be put in biunivocal correspondence. This is a peculiar property of the infinite sets. 
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At this stage, a problem takes place into Maths: have infinite sets the same cardinal number, i.e. are 

they all in a one-to-one correspondence between each other? For example: have the set of rational 

numbers (i.e. the fractions) and the set of natural numbers the same cardinality? Apparently, the 

answer seems to be no, because of the differences between the two sets (e.g. between two rationals 

a third always does exist, but this property doesn’t apply to naturals); nevertheless we can prove 

that an one-to-one correspondence can be established between the set  Q  of the rationals and the set  

N  of the naturals, but to reach this result we need to order the set  Q  not according with greatness 

but according with a scheme like the following: 

 

1/1 ½ 1/3 1/4 1/5 ........ 1/n ......   

2/1 2/2 2/3 2/4 2/5 ....... 2/n ......   

3/1 3/2 3/3 3/4 ...... ....... 3/n ......   

4/1 4/2 4/3 4/4 ...... ...... 4/n ......   

 

 

The order according to which to sort the set  Q  is  
1

1
 ; 

2

1
 ; 

1

2
 ; 

3

1
 ; 

2

2
 ; 

1

3
 ; 

4

1
 ; 

3

2
 ; 

2

3
 ; 

1

4
 etc., 

i.e. the infinite 2-dimensional matrix of all the rationals, built as above, is decomposed in a 

succession of finite diagonals each of them begins with a term 
n

1
 (1

st
 row, n-th column) and 

finishes with a term  
1

n
 (n-th row , 1

st
 column of the matrix); in this way the same number (e.g. 

n

n
  

=  1 ) turns up infinite times, but this doesn’t modify the conclusion of the reasoning: by this way 

each rational number 
n

m
 is coupled with one and only one natural number; therefore according to 

Cantor’s criterion natural numbers and rational numbers have the same cardinality, even if there is 

an infinity of rational numbers such as  
3

2
  , 

4

5
 etc. which are not equal to any positive integer. 

1
 

It remains to examine the set of all the real numbers, i.e. ℜ . To establish whether ℜ and N have the 

same number of elements we start from the infinite decimal representation of a real number, by 

which every real number can be represented by one infinite succession of digits and vice-versa any 

infinite succession of digits separated by a comma defines one real number. Actually, it’s enough to 

examine the reals included between 0 and 1; indeed, if this set and N had not the same cardinal 

number then even ℜ and N will not have same cardinality. 

 

Now suppose  ℜ is in biunivocal correspondence with N; then we can think there is a first real 

number, a second real number, a third one and so on; i.e. we can imagine an infinite countable list 

of all real numbers, no one excluded, like for the set of rationals.  

 

0, a1 b1 c1 d1......... 

0, a2 b2 c2 d2........ 

0, a3 b3 c3 d3........ 

............................. 

............................. 

0, an bn cn dn......... 

............................. 

 

The letters indicate the digits in succession and  n  indicates the real number corresponding to n . 
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But this hypothesis is contradicted by determining at least one real number which cannot belong to 

this list. Indeed, by succeeding in finding even only one real number not belonging to the list, we 

prove this numbering isn’t complete. We can construct a real number different from each number of 

the listing by stating its first decimal digit is different from a1 , the second from  b2 , the third from 

c3 , the n-th different from the n-th digit of the real number corresponding to the natural number n , 

so that its digits are systematically different from those of the diagonal a1 b2  c3 (indeed this 

procedure is known as “diagonal method”). The real number so defined is different from all the 

numbers of the list, in contradiction with the hypothesis according to which the list contains all the 

real numbers. 

Therefore, the cardinality of the set of real numbers is greater than that of natural numbers; in a 

less formal language, reals are “more numerous” than naturals. 

  

Cantor himself introduced the notion of “cardinality of a countable infinity” to denote the “number” 

of all naturals, and of “cardinality of the continuum” to denote the “number” of all reals, and 

assigned to them the symbols  ℵℵℵℵ0 (“aleph-null”) and  C  respectively.  
 

As we have seen above, the cardinality or “power” of a set is analyzed via one-to-one correspondences, since it’s 

enough to find a one-to-one correspondence between two sets to prove they are idempotent. But not all relations 

between two sets are biunivocal. A special ordering of rationals is needed in the diagonal method. However, the power 

of a set is independent of the  order of its elements – it’s an intrinsic property of the set – and must not be confused with 

other properties as density. For example, Q is a “dense” set while  N  isn’t, but they have same cardinality. 

  

The relation between  ℵ0  and  C  can be established via the notion of power set. Given a finite set  

A,  the power set of  A is the set whose elements are all the subsets of  A, including the set  A itself 

and the empty set ∅ . For example, the power set of { }3,2,1  is  { } { } { } { } { } { } { }{ }∅,3,2,1,3,2,3,1,2,1,3,2,1 .  

If a finite set has n elements then its power set contains  n2  elements 
2
. Extending this rule to 

infinite sets, the power set of  N will have 2
ℵ0

 (“2 raised to ℵ0”) elements, etc.; hence, the power set 

of a given infinity  I  has greater cardinality than I. Therefore, starting from the smallest infinity i.e. 

ℵ0 we get an infinity of infinities, each of them is 2 raised to the cardinal number of the immediate 

predecessor. 

 
02

ℵ
 is the cardinal number of continuum, i.e. 02

ℵ
 =  C . To prove this statement intuitively, we 

consider the one-to-one correspondence between the reals and the successions of binary digits 

(neglect the comma 
3
). Every succession defines a series ∑

+∞

=

−⋅
1

2
n

n

nd , which is a real between  0 and  

1  and  d n  is  0  or  1.  The successions of the terms  d n  are 02
ℵ

 (there are n2  different series with 

repetition of n elements equal to 0  or 1).  

 

Mathematicians have tried to establish if some cardinal number exists between ℵ0 and C. The 

conjecture, according to which such a cardinal number doesn’t exist, is known as “continuum 

hypothesis”. 
3 
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NOTES 

 

1.   The analytical law of this correspondence can be found as follows. 

In each diagonal the sum of numerator and denominator is a constant. The number of diagonals with the constant less 

than or equal to a given value  n  is  n -1, and the terms belonging to a diagonal with constant  k  are  k – 1. The number 

of terms belonging to the first  n  diagonals is ∑
−

=

−
1

1

)1(
n

k

k  =  ∑
=

n

k

k
0

  =  
2

)1( +nn
, so  

n

1
 corresponds to 1

2

)1(
+

− nn
   

=   
2

22 +− nn
 and 

n

m
 to 1

2

2)1()1( 2

−+
+−+−−+

m
mnmn

  =  
2

23222 +−−++ mnmnmn
. 

Therefore, the one-to-one relation between  Q  and  N  is 

2

23)( 2 +−−+
→

mnmn

n

m
,  

counting as distinct terms all the fractions equivalent to a given 
q

p
 with  p and  q  prime each other.  

2.  Every subset of A is built by choosing elements of A. Sort the elements of A in a certain order; and assign 1 or 0 to 

each element, depending on if this belongs or not to a given subset. So every subset is defined by a series of  n  terms 

equals to 1 or 0. Since a single term takes two values, there are 4  =  2
2
  different dispositions for a couple of terms, 8 = 

2
3
  for three terms, etc…the dispositions with repetition of an ordered series containing  n terms are  

n2  . 

 

3.  Let  { }ia  with i ≥  0 be the set of all the digits of a positive real  r , neglecting the comma. { }ia  defines one and 

only one succession of general term  qn  = 
i

n

i

ia −

=

⋅∑ 10
0

.  The number  r  is given by multiplying  n
n

q
+∞→

lim  by  
p10  , 

where  p is the characteristic of  r . The cardinality of { }p10  is  0ℵ , so the [positive] reals are 0
02 ℵ⋅ℵ

 =  02
ℵ

. This 

confirms the comma is irrelevant. 

 

4.   The continuum hypothesis is coherent with  ZFC set theory, but not derivable in it (P. Cohen, 1963). 
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