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KINETIC THEORY 

 

 
This brief paper on kinetic theory deals with three topics: the hypotheses on which the theory is 

founded, the calculation of pressure and absolute temperature of an ideal gas and the principal 

consequences of the theory. The level of this treatise is accessible by people who know algebra, 

since calculus is only marginally employed, but to understand the matter thoroughly some 

knowledge of Physics is required, such as the meaning of absolute temperature, energy, average 

value of a quantity etc; however, several quantities and physical constants involved in the 

development of the theory are introduced at the right moment. 

 

 

Contents 

 

Hypotheses of kinetic theory –  a qualitative discussion of the premises of the theory with 

references to facts and considerations confirming each hypothesis. 

 

Calculation of the pressure -  a statistical formula for the pressure of an ideal gas is given by 

starting from the hypotheses of the theory through the analysis of the molecular collisions. 

  

Absolute temperature is a measure of molecular energy -  by comparing the formula of the 

pressure and the state equation of an ideal gas it is proved that absolute temperature is a measure of 

the average kinetic energy of the molecules. 

 

Polyatomic gases  – extension of the theory to polyatomic ideal gases. 

 

Results of kinetic theory – this part examines the implications of kinetic theory:  

extension of the theory to real gases and solids;  

calculation of the root mean square of the molecular velocity for an ideal gas;  

Graham’s and Dalton’s laws;  

internal energy of ideal gases and solids;  

molar heats of ideal gases at constant volume and of monatomic solids;  

calculation of exponent γ γ γ γ in adiabatic processes. 
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The development of Thermodynamics in the first decades of 19th century took place by integrating 

sets of experimental observations and theoretical premises which leaded to the modern heat theory, 

expressed by the first and the second law of Thermodynamics. Although First Law completely 

expresses the equivalence of work and heat by stating that heat is a form of energy, it has an 

essentially empirical nature, since this law doesn’t offer any further explication of heat-work 

equivalence. This blank, due to lack of a complete theory on the behaviour of the molecules, is 

filled just by kinetic theory. 

The conceptual meaning of kinetic theory consists of the providing a mechanical and statistical 

interpretation of Thermodynamics, by calculating pressure P and absolute temperature T as average 

values of mechanical quantities (like mass, velocity, energy etc.). By calculating the pressure of a 

perfect (or ideal) gas 
1
; and comparing the result with the state equation it’s possible to express 

absolute temperature as a function of molecular motion. 

 

 

Hypotheses of kinetic theory 

 

Kinetic theory is based on a set of hypotheses on the microscopic structure of matter founded on 

empirical observations. Some hypotheses apply to matter in general (also to liquid and solid 

phases), the others only to perfect gases. 

 

1.  Matter is composed of minimal units (“molecules”) which can be considered as massive but 

dimensionless material points. In reality molecules have a complex structure, but according to the 

base version of the theory they are devoid of structure and volume. This means that molecules are 

animated only by translational movements, so ignoring rotations and vibrations. Although 

physically incorrect, this hypothesis enables us to build an easily treatable model; the corrections 

necessary to take into account all the degrees of freedom of the molecules and their total volume 

will be introduced later. 

 

2. Molecules are animated by a continuous random motion (said motion of thermal agitation). This 

applies also to states of matter such as liquid and solid phases which apparently seem – especially 

this last one – to consist of motionless particles; according to the theory in the solid phase 

molecules could only perform oscillations around fixed equilibrium positions. Molecular motion is 

evident in the case of gases and solutions, since these substances tend to diffuse, that is to fill the 

whole available volume. Also the pressure of a gas filled in a container is due to the tendency to 

take up the whole space available, so one can easily deduce that pressure originates from the 

molecules knocks on the internal walls of the container and that it depends on molecular motion, 

that is on mass and average speed of the molecules. 

This hypothesis is confirmed by Brownian motion, so named after botanist R. Brown who observed 

it in 1827. Brown discovered that pollen particles (which are extremely light) in suspension in a 

water drop seem to be animated by an unceasing random motion which can be described as a 

succession of extremely short segments. Also particles of different kind but with very little mass 

and dimensions manifest this behaviour when floating in a fluid. The explication consists in 

admitting that in the fluids molecules themselves move continuously and randomly and transfer 

their movement to the pollen particles by knocking on them.  

 

3. The laws of Classical Mechanics apply also to molecular motion. This hypothesis is necessary for 

proceeding in calculation and can be verified only “a posteriori”, i.e. by comparing the results 

predicted by the theory with the available experimental data. 

 

The following hypotheses apply only to ideal gases. Let’s remember that a gas behaves in “perfect” 

or “ideal” way, that’s it satisfies the state equation with a good approximation, when it’s very 
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rarefied and therefore pressure is very low and temperature sufficiently high, that is rather higher 

than condensation point. 

 

4.  Molecules don’t collide on and don’t interact each other (it is a simplification; in a more correct 

theory one has to consider weak intermolecular forces, known as Van der Waals’ forces), so they 

persist in linear uniform motion until collide against the walls of the container. This hypothesis is 

equivalent to admitting that the dimensions of the molecules are extremely small with respect to the 

average distance between each other, so the less dense a gas is, the nearer to reality it is. 

The empirical grounding of this hypothesis is the possibility to strongly compress a gas, especially 

if it’s very rarefied. By increasing pressure it’s possible to compress a gas till a very little fraction of 

the initial volume (for instance, 1/10,000) unless condensation occurs; this means that the total 

volume of all the molecules of a gas (called covolume) is very small with respect to the volume of 

the container. In practise, the volume of one single molecule is negligible, because it’s the ratio 

between covolume and number of molecules contained in a given gas amount; in one mole there are 

about 6.022⋅1023 particles. Therefore the space apparently fitted with an ideal gas is almost 

completely empty and can be strongly reduced by increasing pressure. 

 

5. The collisions of the molecules against internal walls of the container are elastic. 

Perhaps this is the more problematic hypothesis, but it’s necessary to admit it because otherwise the 

pressure of a gas at constant volume and temperature could not remain constant over time, as 

common experience teaches us. In fact, collisions occurring at macroscopic scale never are 

perfectly elastic, while can be totally inelastic; actually every single collision implies a though 

minimal energy dispersion in the form of heat. Therefore we are considering the hypothesis more 

difficult to accept while making reference to phenomena occurring at macroscopic scale. But just 

coherence of theory with observations compels us to admit that collisions are elastic at microscopic 

scale, because otherwise we should come to conclusions contrary to experience itself. 

Bearing in mind that by definition a collision is elastic if kinetic energy  2

2

1
mv  is conserved, let’s 

suppose ex absurdo that the speed of the molecules slows down at every collision against the walls 

of the container. It follows that also intensity and frequency (number of collisions per second) of the 

collisions diminish quickly with time. But pressure of a gas is a growing function of both these 

factors and also it should tend to zero. A balloon fitted with a gas at constant temperature should 

soon become floppy itself. 

Therefore we have to admit that molecular knocks against the walls of the container should be 

elastic; this conclusion must be extended to eventual collisions between molecules, but as we have 

seen these can be neglected in the case of very rarefied gases. 

Elasticity of collisions implies that molecules don’t undergo permanent deformations after 

collisions, coherently with the hypothesis according to which molecules are devoid of structure: in 

fact, we are reasoning as they were stiff, extremely little balls. 

 

Calculation of the pressure 

 

Let’s start calculating the pressure  P  exerted by an ideal gas. In principle, the shape of the 

container should have no importance, because it’s expected that pressure depends only on mass and 

velocity of the molecules; however, in order to proceed with calculation it’s better to consider a 

parallelepiped with faces perpendicular to axes x ,  y and  z  respectively. In particular, let’s indicate 

with  d  the distance between the two faces perpendicular to x-axis and with  S  the area of their 

surface. 

Since pressure is the ratio between the normal force acting on a surface and the area of this surface, 

we have to calculate the force acting on the walls of the container, with particular reference to a 
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face perpendicular to the x-axis. By assuming  N  are the molecules, total force (i.e. the sum of the 

forces of collision exerted by all the molecules)  F  will be given by 

 

F   =   N f 

 

in which  f  is the intensity of the force that a molecule exerts during a collision. Since a force of 

collision depends on velocity of the single molecule (which isn’t the same for all), it’s better to 

substitute  f  with its average value on all the molecules  < f >  and interpret  F  as total average 

force, whose value, because of the extremely high number of particles, is constant over time unless 

thermodynamic variables change. Therefore we can write 

 

F   =   N  < f > 

 

Besides we have to consider that molecules have different velocities. Since velocity is a vector, 

denoting by  vx ,  vy  and  vz  the three components of 
→

v , by Pythagoras’ theorem in the space we 

have  v
2
   =   vx

2
 + vy

2
 + vz

2
 . We are interested to average values calculated on all the molecules; 

since in a chaotic motion there aren’t privileged directions of motion, the mean values of  vx ,  vy  

and  vz  will be equal on the whole set of the molecules, thus we’ll have  <vx
2
>  =  <vy

2
> =  <vz

2
>   

[ <X>  =  mean value of X ]. The mean value  <v
2
>  of the square of  v  will be the sum of three 

terms equal each other, so we get 

<v
2
>  =  3 <vx

2
> . 

 

Moreover in order to simplify the calculation let’s suppose that all the molecules have same mass  

m  (this is a simplification; consider  m  as a mean value 
2
). 

 

To calculate  f  we have to apply the second law of Dynamics in the form 

→

f    =    
t

q

∆

∆
→

 

in which  
→

∆ q  is the variation of linear momentum of a single molecule due to one collision. 

We have to employ the hypothesis according to which collisions are elastic. Let’s treat molecules as 

very little, rigid spheres which when touching the walls of the container undergo a force  
→

f  normal 

to the wall and directed toward inside. Kinetic energy is conserved and absolute values of vx ,  vy  

and  vz  don’t vary. Since acceleration also is normal to the hit surface, only vx varies by changing 

sign. Hence the variation of linear momentum  ∆q is equal to the only component  ∆qx : 

 

∆q =      ∆qx     =     mvx 2  -  mvx 1  

 

where  m  is the mass of the molecule and  1  and  2  refer respectively to the instants immediately 

previous and following the collision. Since  vx 1    =    - vx 2  by neglecting the sign we get 

 

q∆   =   2 mvx  
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Elastic collision against a wall: the molecule  “m” is reflected by the wall and forms equal angles of incidence and 

reflection. 

 

To find the force  f  we have to divide q∆  per the time  ∆t  between two consecutive collisions 

against the same wall. Time is distance per speed; in our case the space is the double of the distance  

d  between the walls perpendicular to the x-axis (the molecule, after a collision against a wall, will 

undergo some knocks on the others before returning to the same wall; the distance covered along 

the x-axis is 2d), and speed is  vx . 

Therefore for a single molecule with velocity  vx  we get  

 

t∆     =    
xv

d2
 

f    =    

x

x

v

d

mv

2

2
    =    

2

d

mvx
 

 

We have to consider the mean value  < f > , therefore substitute  2

xv   with  <vx
2
> . By multiplying  

< f >  by the number  N  of all the molecules we get the total force F exerted by an ideal gas on a 

wall: 

F    =    
d

vNm x >< 2

 

 

To calculate the pressure  P  it’s enough to divide  F  per the area  S  of the wall, so we have  d⋅S  =  
V  (volume of the container) at the denominator. One reaches the same result by considering the 

other faces and the  y  and  z  axes: pressure doesn’t depend on the axis that we have choose to 

execute the calculations, as one can rightly expect since pressure must be uniform in all the 

directions. Therefore  

P    =    
V

vm
N i >< 2

  

 

in which the index  i  can be  x ,  y  or  z .  Since  < v
2 
>   =   3 < vi

2 
>  we have 

 

P    =    
V

vm
N

><
⋅

2

3

1
 

 

This formula contains mechanical quantities ( m and  v ) and has statistical character, because 

implies the average value of the square of velocity on all the molecules. 
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Absolute temperature is a measure of molecular energy 

 

Now we can pass to the meaning of absolute temperature according to kinetic theory. From the 

state equation of an ideal gas 

P V    =    n R T  

 

in which  n  are the moles and  R  is the ideal gas constant we can express  P  in function of the 

others variables: 

P    =    
V

nRT
 

 

By making equal the two expressions of the pressure we get 

 

V

vm
N

><
⋅

2

3

1
    =    

V

nRT
 

 

The total number of the molecules  N  is equal to number of moles  n  times Avogadro’s number 
3 
 

NA  (i.e. the number of molecules in one mole); finally, we obtain the following mechanical and 

statistical expression for absolute temperature: 

T    =    >< 2

3
vm

R

N A   

 

This formula confirms the founding idea of the whole kinetic theory, according to which absolute 

temperature is a statistical measure of chaotic molecular motion. 

To generalize this formula to non-homogeneous gas mixtures we have to substitute  m <v
2
>  with   

< mv
2
 >.  

It’s better to find a relation between temperature and average molecular kinetic energy < Ec >.     

Since >< 2mv    =   2 < Ec >  we get  

T    =    ><⋅ c
A E

R

N

3

2
 ⇒           < Ec >    =    T

N

R

A2

3
. 

 

The ratio between the gas constant  R  and the Avogadro’s constant  NA  is Boltzmann’s constant  

“ k” , a very important quantity in Thermodynamics, equal to about  1,38⋅ 10-23 
K

J
 . 

Finally we get 

< Ec >    =    kT
2

3
 

 

So, according to the simplest version of kinetic theory, mean kinetic energy of one molecule of an 

ideal gas is proportional to absolute temperature of the gas. This equation applies also to gas 

mixtures. 

 

Though not specified in the formulas, velocity and mean velocity-squared are always relative to the 

container, which is supposed in rest. The uniform linear motion of all molecules doesn’t influence 

temperature, which depends only by random motion. This principle applies also to liquids: 

systematic motions like rotations with same angular velocity don’t imply increase of temperature.  
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Polyatomic gases 

 

The final equation   

< Ec >    =    kT
2

3
 

 

applies only to a perfect gas by ignoring rotations and vibrations of the molecules. Actually, 

molecules are often composed of two or more atoms; therefore one has to consider also those 

motions. Since to ignore rotations and vibrations means to consider only the translational motion, it 

follows that the previous equation gives us the mean value of the only translational kinetic energy, 

which is the total kinetic energy only in the case of a monatomic molecule. To extend the theory to 

a polyatomic ideal gas we have to apply the principle of energy equipartition, according to which 

average energy is distributed uniformly among all the degrees of freedom of the molecule; the 

“degrees of freedom” are all the independent coordinates defining position and orientation of one 

object. For a material point the degrees of freedom are the position coordinates, e.g. the three 

Cartesian coordinates  x y z  in a given frame of reference. Therefore mean kinetic energy associated 

with one degree of freedom is 

< Ec 1  >    =    kT
2

1
 

that we can consider as the fundamental relation between energy and temperature. 

 

The degrees of freedom of a diatomic molecule are five (three are translational and two rotational), 

since one of the two atoms – while admitting that the chemical bond is rigid – can rotate around the 

another, so its relative position is identified by two angles ϑ  and ϕ  ; for a 3-atomic or polyatomic 

molecule the rotational degrees are three (the third atom can rotate around the axis connecting the 

first two at fixed distances from each of them). While ignoring vibrational degrees, mean kinetic 

energies of diatomic and 3-atomic molecules will be respectively kT
2

5
  and kT3 . 

 

Results of kinetic theory 

 

Real gases – Kinetic theory can apply to real gases, liquids and solids by admitting that attractive 

and repulsive forces act between the molecules. In the case of a real gas one has to consider also the 

gas covolume, that is the sum of the volumes of all the molecules, so the state equation of a perfect 

gas   PV   =   n R T   must be replaced with equations more complex as the Van der Waals’ one 
4
. 

 

Solids -  In the case of solids it’s supposed molecules are oscillating around fixed equilibrium 

positions, so mean total energy of a molecule is the sum of potential energy and kinetic energy. By 

supposing that, on the average, potential energy is equal to kinetic energy, the total energy of one 

molecule of a substance at the solid state is the double of the kinetic energy. By considering 

monatomic solids such as metals the average total energy of one molecule is 

 

<  E  >    =    kT3   

 

Root mean square velocity of the molecules – Let’s consider a chemically homogeneous perfect 

gas (that is, all the molecules have same mass). We can calculate the root mean square velocity 

(vrms) of the molecules, i.e. the square root of the average value of the translational velocity of the 

molecules: 

vrms   =    >< 2v     =    
N

vvv N

22

2

2

1 ...+++
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where  N  is the number of molecules, and  vi  refers to translational velocity of the i-th particle. 

Starting from  

>< 2

2

1
vm     =    kT

2

3
 

we have  

< v
2
 >    =    

m

kT3
     ⇒       vrsm    =    

m

kT3
 

From this microscopic formula we can get an expression containing macroscopic quantities by 

multiplying numerator and denominator by the number  N  of molecules. Since  kN  =  n (k⋅NA)  =  

nR  where  n  is the number of moles , and  mN   =   n (mNA)   =  nM  where M  is the molar mass, 

we get 

vrms    =    
M

RT3
 

 

or also, since for one mole  RT   =   PV   and   
M

V
   =   

ρ

1
  where  ρ  is the density, 

  

vrms    =    
ρ

P3
  

which is the formula we looked for. 

 

Graham’s law of diffusion – according to this experimental law, average velocities of the 

molecules of two gases at the same pressure are inversely proportional to the square root of the 

respective densities, that is  

b

a

v

v
    =    

a

b

ρ

ρ
 

where  ρ  is the density (ratio between mass and volume) and a  and  b  denote the two gases.  It 

means that, pressure being equal, lighter gases diffuse more rapidly. 

It’s a consequence of the law of the root mean square velocity calculated above, since in Statistics 

it’s proved that  vrms  =  
8

3π
vm  , where vm  is average speed. So the ratios between r.m.s. velocities 

and between average velocities are equal. By admitting that pressures are equal, we have 

b

a

v

v
   =    

brms

arms

v

v

)(

)(
    =    

a

b

ρ

ρ
 

 
Sometimes physicists refers to Graham’s law as the law according to which velocity of diffusion of a gas is inversely 

proportional to the square root of the molar mass at a given temperature, as we can see by the formula 

vrms    =    
M

RT3
 

 

Dalton’s law of partials pressures – This law affirms that [total] pressure of a mixture of ideal 

gases is the sum of the partial pressures exerted by each [chemically homogeneous] gas. 

Let’s start from 

P    =    
V

mv
N

><
⋅

2

3

1
 

valid also for a mixture with  N  molecules. 
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If the gas we denote by the index  “k” contains Nk  molecules of mass  mk  and average velocity 

squared kv >< 2 , we can write 

>< 2mv     =     
N

vmN
k

kkk∑ >< 2

    ⇒    P    =    ∑
><

k

kkk

V

vmN 2

3

1
    =    ∑

k

kP  

which is just Dalton’s law. 

One can get this law directly by state equation:  for each gas of the mixture  Pk   =  
V

RTnk
  and for the whole mixture  

PV  =  n R T . Now,  ∑
k

kP   =   ∑
k

kn
V

RT
  with  ∑

k

kn  =   n    ⇒   ∑
k

kP    =    
V

nRT
   =    P . 

 

Internal energy of an ideal gas – It’s well known that internal energy  U  of an ideal gas is a 

function only of its temperature. Kinetic theory implies just that; indeed internal energy of a perfect 

gas is equal to total kinetic energy of the molecules of the gas, therefore 

U    =    N < Ec >    =    NkT
m

2
 

where  m  is the number of degrees of freedom and  k  the Boltzmann’s constant. Since  N  =  n NA , 

where  n  are the moles and  NA  is Avogadro’s number, and  NA k  =  R  where  R  is the constant of 

the ideal gases, we get  

U     =    RT
m

2
     

 

This formula is the equivalent, at macroscopic level, of the formula 

 

< Ec >    =    kT
m

2
 

valid for molecules with  m  degrees of freedom. 

 

Internal energy of a monatomic solid (metals, etc.) – On the basis of the same method we applied 

to an ideal gas, the internal energy of one mole of monatomic solid substance is 

 

U    =    3R T 

 

(remember that the particles of solids oscillate about their equilibrium positions, so their total 

energy is the sum of kinetic energy and potential energy, which on the average are equal over time). 

 

Molar heats – Premised that molar heat of a substance is the heat capacity of one mole of this 

substance, we have  

∆Q    =    n CM ∆Τ . 
 

in which  ∆Q  is the heat transferred into one mole of a substance not undergoing a phase transition. 

In the case of ideal gases at constant volume  ∆Q    =    ∆U  since the whole heat absorbed by the 
gas is converted into internal energy. By denoting with  CV  the molar heat at constant volume we 

get 

CV ∆T    =    ∆U    =    TR
m

∆
2

 

and finally 

CV    =    R
m

2
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In the case of monatomic solids (metals etc.) the molar heat is given by 

 

CM    =    3 R  

(3 R   =   ca. 6 
Kmol

cal

⋅
), in agreement with the experimental Dulong-Petit’s law (which is correct 

only if the temperature is higher than a critical threshold depending on the chemical composition of 

the substance). 

 

Calculation of the exponent in adiabatic transformations -  The equation of an adiabatic process 

for an ideal gas is 

PV
γ    =   Κ 
 

where  γ  is an exponent depending on the molecular structure of the gas and  K  is a constant. 

From the first principle written in differential form, put  dQ  =  0 , we get 

 

dU + PdV    =    0    ⇒     RdT
m

2
 +  RT

V

dV
   =   0     ⇒    

T

dT
    =    

V

dV

m
⋅−

2
    ⇒    T    =   mV

2
−

      

 

By substituting into the state equation  PV    =    nRT   we get  

 

PV    =    nR mV

2
−

 ⇒      P m

m

V

2+

    =   nR  ,  from which we deduce  γ    =    
m

m 2+
 . 

 

Notes 

 
1.  A gas is said  perfect or ideal if its behaviour agrees by a good approximation with Boyle’s and Gay-Lussac’s laws, 

which occurs if its temperature is much higher than its point of condensation and if the gas is very rarefied. 

The state equation of perfect gases  P V   =   n R T  puts in relation pressure, volume, absolute temperature and number 

of moles. The constant of ideal gases is  R  =  ca 8.31 
Kmol

J

⋅
. 

2.  Even if a gas were chemically pure, nevertheless its molecules should not have same mass, since elements have 

several isotopes.    

 

3.  The number of molecules in one mole is always equal to Avogadro’s number (or Avogadro’s constant), that is ca 

6.02⋅1023 for any substance. Hence mole, not mass, must be considered as measurement unit of the “amount of matter or 

substance”. 

 
 4.  According to  Van der Waals’s equation, pressure  P  is given by  

P    =    
nbV

nRT

−
 - 

2

2

V

an
 

where  n  are the moles and  a  and  b  are positive constants characteristics of each gas. In particular, b is covolume of 

one mole. 
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