SPETTROSCOPIA IN LABORATORIO

di Ezio Fornero

Introduzione: perché la spettroscopia nelle scuole medie superiori

L'osservazione di spettri – in particolare, Na e Hg – da parte degli studenti, in particolare dei licei, dovrebbe essere uno dei punti fermi dell'attività in laboratorio. Anche se non si fanno delle misure quantitative, e se non si insiste su formule astratte – peraltro trattabili teoricamente in lezioni a ciò dedicate – l'interesse che l'argomento può suscitare negli studenti, se non altro per l'aspetto estetico (gli spettri sono belli a vedersi), e i suoi collegamenti con le regioni contigue della Fisica (struttura dell'atomo, strumentazione ottica, natura della luce...) giustificano pienamente che un po'del prezioso tempo a disposizione venga dedicato alla contemplazione delle righe spettrali. E questo non (sol)tanto nei Licei scientifici, ma anche – e forse soprattutto – nei classici e nei linguistici, dove c'è meno spazio per la teoria e per le formule, qualora sussista curiosità verso l'osservazione dei fenomeni naturali.

Come integrare spiegazioni e osservazioni

Personalmente, ho inserito l'osservazione spettroscopica all'interno di una lezione in laboratorio della durata di *almeno* due ore, per classi del liceo scientifico e del liceo linguistico, con modalità poco differenti, integrando osservazioni collettive di fenomeni ottici, interpretazioni teoriche e l'osservazione individuale degli spettri. Lo schema è, a grandi linee, il seguente:

Si inizia introducendo l'argomento – la struttura della luce e la natura dei colori. Questi sono componenti della luce visibile – si deve chiarire che si tratta solo di separarli, rifacendoci al fenomeno della dispersione ottica.

Si illustrano brevemente gli strumenti che operano tale separazione, cioè i *prismi* e i *reticoli*. È opportuno introdurre o rivedere il concetto di *passo* di un reticolo.

Nella prima parte esaminiamo brevemente gli spettri continui ottenuti col prisma e col reticolo, *senza* l'uso dello spettroscopio. Si usa la luce di un proiettore, e la si fa passare attraverso un prisma e poi un reticolo; è bene regolare la focale del proiettore in modo che l'immagine della sorgente sullo schermo sia nitida. *Prisma di Amici*. Si proietta lo spettro del prisma su uno schermo riflettente (un foglio di cartone bianco appeso al muro) e osservare che il rosso è meno deviato rispetto al violetto.

Segue l'osservazione dello spettro ottenuto facendo passare la luce del proiettore attraverso il reticolo (ho usato quello da 300 linee/mm). Si spiega brevemente come finziona, o, meglio, si richiamano i principi della diffrazione e dell'interferenza (massimo centrale, i massimi laterali...) Si prendono in considerazione le differenze tra i due spettri (l'ordine dei colori, ecc.). È bene eseguire le osservazioni al buio. Non bisogna esagerare con le spiegazioni teoriche, che possono risultare noiose; bisogna accompagnarle alle osservazioni, motivandole come spiegazione di ciò che si vede. Io mi sono limitato agli aspetti essenziali dell'ottica fisica; non ho fatto richiami all'ottica geometrica, anche se questa sarebbe implicata nell'analisi dello spettroscopio, sia per ragioni di tempo, sia perché la discussione di troppi argomenti teorici in laboratorio risulterebbe ala lunga pesante e diminuirebbe il grado di attenzione del "pubblico".

Esaurita l'illustrazione degli spettri continui, si fa riferimento al fatto che gli spettri ottenibili con lampade spettroscopiche sono spettri *discreti*. Spiegare sinteticamente il principio di funzionamento di una lampada spettroscopica, farla vedere in funzione non schermata. Spiegare la natura discreta dello spettro in relazione alla struttura discreta dei livelli di energia (atomo di Bohr, quanti di luce, legge di Planck) ed *evidenziare come storicamente l'idea del modello discreto dei livelli energetici dell'atomo deriva dalle osservazioni spettroscopiche.*

A questo punto, dopo aver ben chiarito che esiste una precisa relazione tra gli spettri discreti e la struttura degli atomi e delle molecole, si può passare alle osservazioni individuali dello spettro del Na o Hg.

Sorgenti luminose – caratteristiche della luce prodotta

Si usa una *lampada spettroscopica*. Si tratta essenzialmente di un recipiente di vetro o di quarzo contenente un aeriforme a bassissima pressione (vapori di Hg, di Na, Ne, He ecc) e nel quale penetrano due elettrodi (cioè due poli conduttori). Applicando a questi una tensione elettrica sufficientemente elevata, si produce nell'aeriforme una scarica elettrica che lo rende luminoso.

Il meccanismo è a grandi linee il seguente. Il gas all'interno della lampada contiene una piccola percentuale di particelle cariche (ioni positivi e negativi, ed elettroni liberi) che, sotto l'effetto della tensione elettrica applicata, acquistano velocità e quindi energia cinetica (gli ioni positivi si muovono verso il catodo, cioè l'elettrodo negativo, quelli negativi e gli elettroni verso l'anodo, che è positivo). Queste particelle, se hanno acquistato sufficiente velocità, urtando le particelle elettricamente neutre, trasferiscono agli elettroni esterni di queste una energia bastante per estrarne un elettrone e ionizzarle; lo ione positivo e l'elettrone separati dall'urto si aggiungono alle cariche già presenti e contribuiscono al meccanismo della scarica. Se la velocità acquistata non è sufficiente per produrre la ionizzazione, ma è abbastanza elevata, l'urto trasferisce energia agli elettroni esterni, che si "eccitano" e, dopo un brevissimo intervallo di tempo, rilasciano l'energia acquistata sotto forma di radiazione luminosa. La luce osservata trasporta l'energia associata alle diseccitazione degli elettroni eccitati dalla scarica elettrica. La radiazione è quindi dovuta alla somma di tante componenti (dette "quanti di luce") ciascuna delle quali dovuta a un singolo evento di diseccitazione, cioè al passaggio di un elettrone da un livello di energia più alto a uno più basso.

Secondo la meccanica quantistica, l'energia E associata a un singolo quanto è collegata alla sua frequenza ν dalla $legge\ di\ Planck$, in base alla quale

$$E = h n$$

dove "h" è la "costante di Planck", che vale $6.62\cdot10^{-34}~J\cdot s$. La lunghezza d'onda λ della luce e la sua frequenza ν sono inversamente proporzionali, in base alla relazione

$$\lambda = \frac{c}{n}$$

Quindi i "quanti" più energetici corrispondono alle lunghezze d'onda minori, cioè al blu, al violetto e all'ultravioletto (non visibile), mentre quelli di frequenza minore sono associati al rosso e all'infrarosso (quest' ultimo non visibile).

Dato che la struttura dei livelli energetici degli elettroni nelle sostanze allo stato gassoso è discreta – secondo uno schema che generalizza il modello di Bohr – anche l'insieme di tutte le possibili transizioni da un livello più eccitato a un livello meno energetico è discreto, e quindi lo sono anche le energie e le lunghezze d'onda che costituiscono la radiazione. Inoltre, dato che la struttura dei livelli di energia negli atomi e nelle molecole dipende dalla configurazione elettronica, che è caratteristica della particolare sostanza esaminata, ne segue che ad ogni elemento composto, allo stato aeriforme, è associato un particolare insieme di componenti osservate (detto lo "spettro" della radiazione). Quindi, dallo spettro luminoso osservato si risale alla natura della sostanza luminescente, e anche alla sua struttura elettronica.

Struttura dello spettroscopio

Per esaminare lo spettro, bisogna poter osservare separatamente le sue componenti. Per questo servono uno strumento che trasformi il fascio di luce origine, cioè prodotto dalla sorgente luminosa, in un insieme di raggi con direzione di propagazione dipendente dalla λ ? e un *cannocchiale* che permetta all'osservatore di vedere chiaramente, in posizioni diverse, le componenti dello spettro. Per separare queste singole componenti nello spazio, la luce emessa dalla sorgente deve passare attraverso una fenditura, disposta verticalmente rispetto all'osservatore, piuttosto stretta (c.ca 1/10

mm o anche meno) e deve essere *collimata*, cioè trasformata in un insieme di raggi paralleli, da una lente convergente. La fenditura deve trovarsi nel fuoco della lente convergente ("collimatore"). La luce collimata quindi viene fatta passare attraverso un *prisma*, oppure attraverso un *reticolo di diffrazione*, ottenendo la separazione delle componenti; la radiazione a questo punto viene raccolta dall'*obiettivo* del cannocchiale, e infine, attraverso l'*oculare*, è visibile all'osservatore. Le componenti separate appaiono come immagini un po' ingrandite della fenditura, cioè come righe verticali rispetto all'osservatore, e quindi si parla di *righe dello spettro*. Il cannocchiale non serve per separare fisicamente le singole componenti, ma ottimizza la visione dello spettro, distanziandole nello spazio.

Si può utilizzare uno spettroscopio di quelli usualmente in dotazione ai laboratori di Fisica, che sono per lo più a *bassa dispersione* (cioè permettono di vedere contemporaneamente tutte le righe visibili, e di metterle tutte a fuoco, ma in compenso la separazione è ridotta; p.es. è difficile, o impossibile, distinguere le due righe D gialle del Na, e sono poco o nulla visibili le righe più deboli).

Per avere una migliore dispersione, rinunciando a vedere tutto lo spettro simultaneamente, ho realizzato, con gli strumenti a disposizione del laboratorio, uno *spettroscopio a media dispersione* che utilizza un reticolo di 590 linee/mm, col quale le due righe gialle del Na appaiono ben distinte. Tale strumento è in linea di principio costruibile dal docente, se dispone di un numero sufficiente di lenti, del reticolo e di un banco ottico.

Costruzione dello spettroscopio

Ho utilizzato il seguente materiale:

Alimentatore per lampade spettroscopiche, con portalampada, alimentato con tensione di rete 220 V Lampade spettroscopiche Osram (Na, Hg, He...) con ampolla di quarzo (*Ho utilizzato una lampada al Na*)

Lenti sferiche di vetro, montate su portalenti con asta metallica di sostegno fissati in cavalierini scorrevoli sui banchi ottici

2 banchi ottici Phywe : una sbarra di acciaio lunga 100 cm a profilo pentagonale, suddivisa in mm, e una sbarra di 57 cm con giunto girevole anch'essa millimetrata e a profilo pentagonale

Fenditure micrometriche verticali montate su schermo girevole ad apertura regolabile mediante una vite

Sostegni con morsa per banco ottico, e per congiungere i due banchi ottici Reticolo a 590 linee/mm

Lo schema è il seguente:

S =sorgente luminosa; F =fenditura;

 $C = lente \ collimatrice \ (convergente; focale = +10 \ cm); \qquad G = giunzione \ tra \ i \ due \ banchi ottici; \qquad R = reticolo \ di \ diffrazione; \qquad SN = snodo, intorno \ cui \ ruotare \ il \ cannocchiale;$

Ob = obiettivo (convergente; focale = +10 cm); D = lente di controllo (divergente, -5 cm);

Oc = oculare (convergente, + 5cm).

La fenditura \mathbf{F} deve essere molto vicina alla sorgente \mathbf{S} , in modo da raccogliere quanta più energia è possibile. In teoria, la distanza tra il collimatore \mathbf{C} e il reticolo \mathbf{R} è arbitraria. Lo snodo $\mathbf{S}\mathbf{N}$ permette di orientare il cannocchiale rispetto alle diverse direzioni dei raggi in uscita dal reticolo. La lente di controllo \mathbf{D} può essere traslata lungo il cannocchiale, per mettere a fuoco le singole righe dello spettro.

Se le lenti fossero otticamente perfette, lo sperimentatore osserverebbe le righe tutte messe a fuoco contemporaneamente. Tuttavia, le lenti *sferiche*, anche se geometricamente perfette, presentano due tipi di *aberrazioni ottiche*, vale a dire difetti ineliminabili in quanto dovuti alla loro forma: l'aberrazione cromatica e quella di sfericità. La prima consiste nel fatto che il fuoco delle lenti non è lo stesso per tutte le lunghezze d'onda. In un sistema di tre lenti convergenti, le aberrazioni cromatiche si sommano, e quindi non è possibile mettere a fuoco contemporaneamente tutte le righe dello spettro. Inoltre, non tutti i raggi passano attraverso il centro delle lenti, e non tutti possono essere paralleli all'asse ottico del cannocchiale. Per correggere in parte questi difetti, si può inserire tra l'oculare e l'obiettivo del cannocchiale una lente *divergente* "di controllo" che può venire spostata verso l'oculare o l'obiettivo, a seconda della particolare riga che si vuole mettere a fuoco. Inoltre, bisogna considerare che lo spettroscopio è a *media dispersione*, cioè la "distanza" visuale tra le righe visibili estreme (rosso e violetto) supera il campo dell'oculare: quindi non è possibile visualizzare contemporaneamente tutte le righe, ma bisogna ruotare l'asse del cannocchiale intorno a uno snodo posto tra il reticolo e l'obiettivo, in modo da avere nel centro dell'oculare la riga che si vuole osservare.

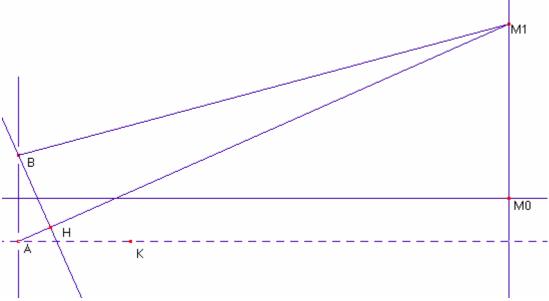
Per quanto riguarda il montaggio dello spettroscopio: l'operazione richiede un po' di tempo. Si deve porre attenzione alla posizione esatta del reticolo: il piano su cui giace il reticolo deve passare per lo snodo intorno al quale può ruotare il braccio del banco ottico snodabile, e deve essere perpendicolare al banco ottico su cui è montata la sorgente; se il reticolo non è ben posizionato sarà difficile ottenere delle immagini nitide. È ovvio che i piani delle lenti devono essere il più possibile perpendicolari al banco ottico. Io ho usato una lente convergente con focale = +10 cm per collimare la luce trasmessa dalla fenditura posta davanti alla sorgente; in tal caso, la distanza tra il collimatore C e tale fenditura F dovrà essere di 10 cm. In ogni caso, è bene controllare che il fascio luminoso sia ben collimato: dopo aver montato lampada, fenditura e lente collimatrice, si può porre uno schermo riflettente davanti al collimatore e spostarlo di alcuni cm avanti e indietro; l'immagine riflessa sullo schermo deve mantenere dimensioni (quasi) costanti ed essere nitida. La fenditura non deve essere troppo aperta. Ho sistemato sorgente, fenditura e collimatore sul banco ottico più lungo; la distanza tra collimatore e reticolo è teoricamente arbitraria, negli strumenti da me costruiti era compresa tra 10 e 15 cm.

Per quanto riguarda il cannocchiale, è bene procedere empiricamente: posizionare l'oculare (ho usato una lente convergente da +5 cm) all'estremità del banco snodabile più lontana dal reticolo, e l'obiettivo (convergente + 10) fisso più vicino al reticolo, a una distanza di pochi cm; bisogna anzitutto sistemare la lente divergente di focale –5 cm (che mette a fuoco le immagini della fenditura) in modo che siano ben visibili e nitide alcune righe dello spettro. Il mio metodo è quello di tarare lo strumento in modo da ottimizzare la visione delle righe gialle del Na. Questa operazione richiede un po' di tempo, ma deve ritenersi compiuta solo quando le due righe D del Na appaiono ben visibili, distinte e senza troppe sbavature. La qualità dell'immagine dipende dall'orientamento di tutte le lenti e da quello della fenditura, e si deve procedere a tentativi finchè non si è soddisfatti del risultato. Si tenga presente che lo spettro è visibile lateralmente rispetto alla direzione del banco ottico contenente la sorgente, quindi bisogna cercare anzitutto di determinare sperimentalmente l'angolo di rotazione del braccio snodabile per cui l'immagine delle righe gialle è al centro dell'oculare. Lo spettro che generalmente si osserva è quello del primo ordine (il reticolo genera più spettri), e lo si trova facilmente facendo ruotare il braccio snodabile a partire dalla direzione

allineata col banco ottico contenete la sorgente indifferentemente verso destra o sinistra. Una volta riuscita l'ottimizzazione delle righe gialle del Na, le altre righe si vedono ruotando il braccio snodabile; per metterle a fuoco, si deve spostare la lente divergente D, che serve a modificare la focale dell'obiettivo del cannocchiale: infatti, utilizzando lenti sferiche si hanno *aberrazioni cromatiche longitudinali* e la lente D serve appunto a correggere questo problema. Avvicinando D all'obiettivo si mettono a fuoco le lunghezze d'onda più corte, avvicinandola all'oculare il rosso. *Più oltre ho inserito ulteriori dettagli tecnici sulla costruzione del cannocchiale.*

Reticolo di diffrazione (cenno)

Il reticolo non produce un solo spettro, ma una serie di spettri, a destra e a sinistra di un massimo centrale, che è la figura di diffrazione generata dalla luce che non viene deviata e che quindi riunisce tutte le componenti.


Il reticolo può essere immaginato come uno schermo opaco nel quale è incisa una serie di fenditure parallele, disposte verticalmente rispetto all'osservatore, estremamente sottili, attraverso cui la luce viene trasmessa con una forte diffrazione. La distanza tra due fenditure contigue è detta *passo del reticolo* ed è la grandezza che definisce il suo *potere separatore*, cioè la capacità di distinguere in raggi separati le componenti con lunghezze d'onda quasi uguali. Infatti il potere separatore è inversamente proporzionale al passo del reticolo. Nel nostro caso il reticolo reca 590 fenditure per

mm, quindi il passo è c.ca
$$\frac{0,001}{590}$$
I= 1,695·10⁻⁶ $\frac{metri}{riga}$. I raggi convergenti su uno schermo

"lontano" dal piano del reticolo producono un massimo se formano interferenza costruttiva, cioè se la differenza dei percorsi è un multiplo intero della lunghezza d'onda. Detta d la differenza dei percorsi e p il passo del reticolo, si ha l'equazione

$$N \mathbf{l} = p \sin \mathbf{q}$$

Essendo θ l'angolo di deviazione dei raggi (se lo schermo è lontano rispetto alle dimensioni del reticolo, questi sono quasi paralleli e θ è lo stesso per tutti i raggi). Nell'esperimento lo schermo è in realtà la superficie della lente che funge da obiettivo.

Nella figura, A e B sono le fenditure del reticolo, M_0 e M_1 sono rispettivamente il massimo centrale e il primo massimo laterale su uno schermo parallelo al reticolo. L'angolo di deviazione è $KAM_1 = ABH$. La differenza dei percorsi ottici dei raggi quasi paralleli consecutivi è $AH = AB\sin{(ABH)}$, cioè $p\sin{q}$.

Noi osserviamo le righe del massimo destro del primo ordine, che corrisponde a N=1. Quindi si ha sin $\theta=\frac{1}{p}$, da cui si capisce che sin θ ?cioè θ 2umenta se p diminuisce; in pratica ciò

significa che il potere separatore aumenta se diminuisce il passo del reticolo, cioè se aumenta il numero delle fenditure contenute in un mm.

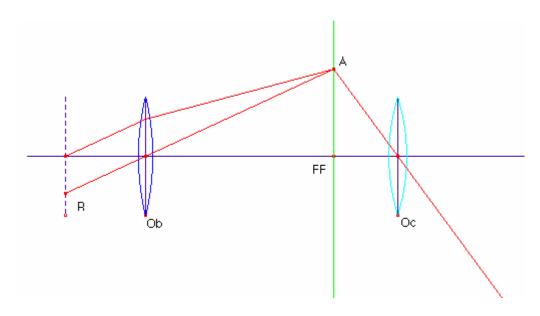
Ne consegue che l'energia luminosa viene distribuita nello spazio in modo non uniforme, e ogni lunghezza d'onda corrisponde a una diversa serie di massimi e minimi di intensità.

Esempi di spettri

Spettro del Na

A destra il rosso, a sinistra il violetto – la seconda riga da destra è il doppietto giallo del Na, nel quale è concentrata la maggior parte dell'energia radiante. È simile allo spettro dell' H. Le due righe gialle corrispondono a 589,0 e a 589,6 nm (1 nm = 10^{-9} m) e sono quindi "separate" da 0.6 nm.

Spettro del Hg il rosso a destra, il violetto a sin.


APPROFONDIMENTI

A) cannocchiale

La scelta delle lenti che compongono il cannocchiale dipende dall'ingrandimento che si vuol ottenere. Con grandi ingrandimenti, è possibile ottenere una migliore separazione spaziale delle righe; con piccoli ingrandimenti è possibile esaminare una maggior parte del campo visibile.

Nel primo caso può andar bene la combinazione sopra proposta: oculare = +10 cm, obiettivo +5, lente di controllo -5.

Nel secondo caso, si può utilizzare una divergente -10 cm come lente di controllo.

Semplificando al massimo, i raggi uscenti dal eticolo R corrispondenti a una data lunghezza d'onda λ sono (quasi) paralleli e vengono fatti convergere in un punto A sul piano focale dell' obiettivo Ob. Detto α l'angolo che i raggi λ formano con l'asse ottico, deve essere AFF = f_I tan α dove f_I è la distanza focale dell'obiettivo. Nel cannocchiale composto regolabile, l'obiettivo è in realtà costituito da due lenti (la lente convergente e la lente divergente di controllo) per rimediare all'aberrazione cromatica. L'oculare funziona come una lente d'ingrandimento applicata all'immagine reale dello spettro che si forma nel piano focale dell'obiettivo composto. Se consideriamo due raggi di deviazione α e α + $\delta\alpha$, i rispettivi punti-immagine saranno distanziati di f_I (tan $(\alpha+\delta\alpha)$ – tan α) $\approx f_I \frac{da}{\cos^2 a}$. Se, in base alla teoria elementare della lente di

ingrandimento, ammettiamo per l'oculare un potere di ingrandimento $=\frac{25}{f_2}$ dove f_2 è la sua

focale in cm, la distanza apparente misurata dall'osservatore tra due righe separate da un angolo $\delta\alpha$ risulta essere (in cm)

$$25\frac{f_1}{f_2}\frac{d\mathbf{a}}{\cos^2\mathbf{a}} \quad (1)$$

Per "distanza apparente" intendo la distanza che separerebbe due righe disegnate a 25 cm dall'occhio dell'osservatore, in modo da apparire all'occhio posizionato proprio davanti all'oculare così come sono effettivamente viste. In realtà le righe osservate sono immagini all'infinito.

La focale dell'obiettivo composto è data dalla formula

$$\frac{1}{f} = \frac{1}{f_A} + \frac{1}{f_B} - \frac{D}{f_A f_B}$$

Dove f_A e f_B sono le focali delle due lenti componenti (nel nostro caso, f_B è negativa) e D è la loro distanza.

L'angolo $\delta \alpha$ si ottiene dalla relazione del reticolo: $\lambda = p \sin \alpha \implies \delta \lambda = p \cos \alpha \delta \alpha \implies \delta \alpha = \frac{dl}{p \cos a}$

Se si sostituisce nella (1), si ottiene la formula

$$25\frac{f_1}{f_2}\frac{d\mathbf{l}}{p\cos^3\mathbf{a}} \qquad \text{(in cm)} \tag{2}$$

per la distanza apparente tra due linee di lunghezza d'onda λ e $\lambda + \delta\lambda$.

In realtà, l'aberrazione cromatica della lente collimatrice che dovrebbe trasformare in raggi paralleli la luce uscente dalla fenditura implica che gli angoli di deviazione per i vari colori siano un poco diversi da quelli previsti. In pratica, la distanza D tra la lente convergente dell'obiettivo e la lente divergente di controllo deve essere regolata in modo da ottimizzare la visione delle singole righe, quindi è funzione empirica della 1.

La lunghezza L del cannocchiale, $f_1 + f_2$, è arbitraria ed è la variabile che di fatto decide l'ingrandimento ottenibile. Infatti f_2 è una costante (p.es., +5 cm), mentre f_1 è funzione della distanza D. Poiché l'obiettivo composto deve essere convergente, la distanza D deve soddisfare la disequazione

$$\frac{1}{f_A} + \frac{1}{f_B} - \frac{D}{f_A f_B} > 0$$

Cioè $D > f_A + f_B$ (si ricordi che $f_B < 0!$).

Nello strumento da me utilizzato le focali erano +10 e -5, quindi era sempre D > 5 cm. Il potere convergente dell'obiettivo composto infatti è funzione decrescente della D.

È chiaro dalla formula (2) che il potere di ingrandimento dello strumento dipende in modo critico dal cosα, essendo funzione crescente dell'angolo di deviazione, in modo da esaltare, in un singolo spettro, le righe di maggiore lunghezza d'onda.

Prendendo come riferimento la riga gialla del Na di 5890 A, si ha in corrispondenza un angolo di deviazione (per il massimo del primo ordine) = 0,355 rad $\Rightarrow \cos\alpha = 0,9377 \Rightarrow \cos^3\alpha = 0,8244$. Se si assume $p = \frac{1mm}{590}$, $f_2 = 5$ cm e $\delta\lambda = 1$ Å, si ha una separazione lineare apparente = 0,000358 f_1 (in cm.). Se ipotizziamo una focale dell'oculare composto = 30 cm, abbiamo 0,010735 cm, cioè c.ca un decimo di mm. La separazione delle due righe del Na è di 6 Å, quindi c.ca mezzo mm alla distanza di 25 cm dall'osservatore.

B) Potere dispersivo del reticolo di diffrazione

È la grandezza che più ci interessa, perché quantifica la capacità del reticolo di separare le diverse lunghezze d'onda. Esso è definito come $\frac{d\mathbf{q}}{d\mathbf{l}}$, essendo θ l'angolo sotto cui è deviata la radiazione di lunghezza d'onda λ (nell'ipotesi di incidenza normale al piano del reticolo). Dalla relazione fondamentale $m\lambda = p\sin\theta$ che definisce i massimi dell'energia diffratta si ottiene

$$\frac{d\mathbf{q}}{d\mathbf{l}} = \frac{m}{p\cos\mathbf{q}},$$

essendo m *l'ordine del massimo*. È evidente che il potere dispersivo è maggiore se il passo è piccolo, e se l'angolo di deviazione è grande (verso i 90°). Ciò consiglierebbe di lavorare sui massimi di ordine superiore, ma bisogna considerare che la percentuale di energia radiante di questi massimi è decrescente all'aumentare del numero d'ordine, cioè l'energia si concentra soprattutto nel massimo centrale non deviato e in quello di primo ordine.

C) Larghezza delle linee spettrali

La separazione delle lunghezze d'onda dipende però anche dalla larghezza dei massimi. La separazione delle righe è migliore se le righe sono molto sottili. Si adotta il *criterio di Rayleigh* per cui due linee adiacenti sono separate (distinguibili) quando il massimo di una delle due si sovrappone al primo minimo dell'altra, e ovviamente quando la distanza tra i due massimi è superiore a questo caso limite. Ciò significa che la distanza angolare tra due massimi adiacenti deve essere almeno uguale alla netà della distanza tra i due minimi adiacenti a un massimo, che ne rappresenta la "larghezza". Tale "larghezza" $\delta\theta$ dipende dal numero N delle linee del reticolo attraversate dalla luce, secondo la relazione

$$\delta\theta = \frac{2\mathbf{l}}{Np\cos\mathbf{q}}$$

da cui si deduce che il potere separatore aumenta se il numero delle fenditure del reticolo attraversate dalla radiazione è grande. In pratica Np è la larghezza della superficie del reticolo attraversata dalla radiazione, che è dell'ordine di qualche mm. Assumendo 1 mm, il calcolo fornisce, per le righe gialle del Na ($\lambda = 5900~\text{Å}$, p = 1~mm/590 linee, $\cos\theta = 0.9377$) il valore di 0,00126 rad, cioè 4 ' 19 '' . La distanza tra le due righe D del Na è 6 Å , che con lo stesso reticolo e al massimo del primo ordine implica una distanza angolare = $\frac{1}{(0.001) \cdot 0.9377} \cdot 6 \cdot 10^{-10} = \frac{1}{(0.001) \cdot 0.9377}$

3,775 10⁻⁴ rad = 1' 12''. Le due righe del Na sono quindi separabili, con un reticolo di 590 linee/mm, posto perpendicolarmente al pennello incidente, solo se si riesce a illuminarlo per una estensione di almeno 2 mm. Nel dispositivo da me usato le due righe sono chiaramente separate nel massimo di primo ordine.

In generale, detto $\Delta\theta$ la distanza tra i due massimi e $\delta\theta$ la loro larghezza, deve essere $\frac{1}{2}\frac{dq}{\Delta q}$ < 1,

cioè $\frac{1}{Nmdl}$ < 1 . Ciò porta a considerare il *potere risolutivo cromatico* del reticolo, cioè il rapporto $\frac{1}{dl_{min}}$ tra lunghezza d'onda e differenza tra lunghezze d'onda appena separabili dallo

strumento. La condizione di separazione al primo ordine implica quindi che $N > \frac{I}{dl_{\min}}$, che, nel caso del doppietto D del sodio, significa N > 987, indipendentemente dal passo del reticolo.

D) Distribuzione angolare dell' intensità di radiazione

Applichiamo la teoria di diffrazione di campo remoto, nel caso di un sistema di N fenditure rettangolari, di periodicità (passo) p e di ampiezza a. Detta I l'intensità di radiazione in funzione dell'angolo di deviazione θ , si ottiene

$$I(\mathbf{q}) = I(\mathbf{0}) \frac{\sin^2(\frac{\mathbf{p}}{\mathbf{l}}a\sin\mathbf{q})}{(\frac{\mathbf{p}}{\mathbf{l}}a\sin\mathbf{q})^2} \cdot \frac{\sin^2(\frac{\mathbf{p}}{\mathbf{l}}Np\sin\mathbf{q})}{\sin^2(\frac{\mathbf{p}}{\mathbf{l}}p\sin\mathbf{q})}$$
(2)

Il primo fattore, contente l'ampiezza delle fenditure, fornirebbe l'intensità della radiazione a grandi distanze se la fenditura fosse una sola. Si annulla per $\sin \theta = \frac{m \mathbf{l}}{a}$ e quindi solo se $\lambda < a$. In ogni

caso, la funzione $\frac{\sin^2 x}{x^2}$ decresce a partire da x = 0 (il massimo centrale) fino a $x = \pi$; quindi, all'aumentare di θ , la visibilità delle righe diminuisce.

Il secondo fattore fornisce i massimi e i minimi. Consideriamo $F = \frac{\sin^2 Nx}{\sin^2 x}$, e la derivata $\frac{2\sin(Nx)[N\sin x\cos(Nx) - \cos x\sin(Nx)]}{\sin^3 x}$. Per $x = m\mathbf{p}$ si ha il massimo $= N^2$. Quindi i massimi si ottengono per $p\sin\theta = m\lambda$, confermando il risultato della teoria elementare del reticolo. La loro intensità è data da $I_{MAX} = I_0 N^2 \frac{\sin^2(\frac{ma}{p}\mathbf{p})}{(\frac{ma}{p}\mathbf{p})^2}$.

Annullando il numeratore con $\sin^2 x \neq 0$, si ottiene la serie dei minimi per $\sin\theta = \frac{m\mathbf{l}}{Np}$, con m non multiplo di N. Gli angoli di minimo sono quindi molto più numero si rispetto a quelli di massimo prima calcolati.

In realtà altri punti di massimo (massimi secondari) si ottengono dall'equazione

 $N\sin x \cos(Nx) - \cos x \sin(Nx) = 0$. Questi massimi non sono di fatto visibili e sono ovviamente compresi tra due minimi consecutivi.

LUNGHEZZE D'ONDA E ANGOLI DI DEVIAZIONE CON UN RETICOLO DI 590 LINEE/mm

LUNGH ONDA	SENO	ANGOLO RAD	ANGOLO GRADI
in Å			
3900	0,2301	0,232180439	13,30296
4000	0,236	0,238247508	13,65058
4100	0,2419	0,244323529	13,99871
4200	0,2478	0,250408769	14,34737
4300	0,2537	0,256503495	14,69657
4400	0,2596	0,262607979	15,04633
4500	0,2655	0,268722498	15,39666
4600	0,2714	0,27484733	15,74759
4700	0,2773	0,280982758	16,09913
4800	0,2832	0,287129071	16,45128
4900	0,2891	0,293286559	16,80408
5000	0,295	0,299455519	17,15754
5100	0,3009	0,305636251	17,51167
5200	0,3068	0,31182906	17,86649
5300	0,3127	0,318034256	18,22202
5400	0,3186	0,324252154	18,57828
5500	0,3245	0,330483075	18,93529
5600	0,3304	0,336727344	19,29306
5700	0,3363	0,342985292	19,65161
5800	0,3422	0,349257257	20,01097
5900	0,3481	0,35554358	20,37115
6000	0,354	0,361844613	20,73217
6100	0,3599	0,368160709	21,09405
6200	0,3658	0,374492232	21,45682
6300	0,3717	0,380839551	21,8205
6400	0,3776	0,387203042	22,1851
Ezio Fornero – Spettroscopia in laboratorio – 10/13			

Ezio Fornero – Spettroscopia in laboratorio – 10/13

http://www.superzeko.net - Per espressa volontà dell'autore, questo testo è liberamente utilizzabile per fini personali o didattici.
Qualora tuttavia dovesse essere riprodotto su un sito web o in una pubblicazione, si prega di citare la fonte.

6500	0,3835	0,39358309	22,55065
6600	0,3894	0,399980086	22,91717
6700	0,3953	0,406394429	23,28469
6800	0,4012	0,412826528	23,65322
6900	0,4071	0,419276799	24,02279
7000	0,413	0,425745669	24,39343
7100	0,4189	0,432233571	24,76516
7200	0,4248	0,43874095	25,138
7300	0,4307	0,445268261	25,51199
7400	0,4366	0,451815969	25,88715
7500	0,4425	0,45838455	26,2635
7600	0,4484	0,46497449	26,64108
7700	0,4543	0,471586289	27,0199
7800	0,4602	0,478220457	27,40001
7900	0,4661	0,484877519	27,78144
8000	0,472	0,49155801	28,1642

LUNGHEZZE D'ONDA E ANGOLI DI DEVIAZIONE CON UN RETICOLO DI 300 LINEE/mm

LUNGH ONDA	SENO	ANGOLO RAD	ANGOLO GRADI
3900	0,117	0,117269	6,718995
4000	0,12	0,12029	6,892103
4100	0,123	0,123312	7,065273
4200	0,126	0,126336	7,238508
4300	0,129	0,12936	7,41181
4400	0,132	0,132386	7,58518
4500	0,135	0,135413	7,75862
4600	0,138	0,138442	7,932131
4700	0,141	0,141471	8,105716
4800	0,144	0,144502	8,279376
4900	0,147	0,147535	8,453112
5000	0,15	0,150568	8,626927
5100	0,153	0,153603	8,800821
5200	0,156	0,15664	8,974798
5300	0,159	0,159678	9,148857
5400	0,162	0,162717	9,323002
5500	0,165	0,165758	9,497234
5600	0,168	0,1688	9,671555
5700	0,171	0,171845	9,845966
5800	0,174	0,17489	10,02047
5900	0,177	0,177937	10,19507
6000	0,18	0,180986	10,36976
6100	0,183	0,184037	10,54455
6200	0,186	0,18709	10,71944
6300	0,189	0,190144	10,89443
6400	0,192	0,1932	11,06952
6500	0,195	0,196257	11,24472
6600	0,198	0,199317	11,42003
6700	0,201	0,202379	11,59544

6800	0,204	0,205442	11,77097
6900	0,207	0,208508	11,9466
7000	0,21	0,211575	12,12235
7100	0,213	0,214644	12,29822
7200	0,216	0,217716	12,4742
7300	0,219	0,220789	12,6503
7400	0,222	0,223865	12,82653
7500	0,225	0,226943	13,00288
7600	0,228	0,230023	13,17935
7700	0,231	0,233105	13,35595
7800	0,234	0,23619	13,53268
7900	0,237	0,239277	13,70955
8000	0,24	0,242366	13,88654

LUNGHEZZE D'ONDA E ANGOLI DI DEVIAZIONE CON UN RETICOLO DI 100 LINEE/mm

LUNGH ONDA	SENO	ANGOLO RAD	ANGOLO GRADI
3900	0,039	0,03901	2,235102
4000	0,04	0,040011	2,292443
4100	0,041	0,041011	2,349786
4200	0,042	0,042012	2,407131
4300	0,043	0,043013	2,464478
4400	0,044	0,044014	2,521828
4500	0,045	0,045015	2,579181
4600	0,046	0,046016	2,636536
4700	0,047	0,047017	2,693894
4800	0,048	0,048018	2,751255
4900	0,049	0,04902	2,808618
5000	0,05	0,050021	2,865984
5100	0,051	0,051022	2,923353
5200	0,052	0,052023	2,980725
5300	0,053	0,053025	3,0381
5400	0,054	0,054026	3,095478
5500	0,055	0,055028	3,152859
5600	0,056	0,056029	3,210243
5700	0,057	0,057031	3,26763
5800	0,058	0,058033	3,325021
5900	0,059	0,059034	3,382415
6000	0,06	0,060036	3,439813
6100	0,061	0,061038	3,497214
6200	0,062	0,06204	3,554618
6300	0,063	0,063042	3,612026
6400	0,064	0,064044	3,669438
6500	0,065	0,065046	3,726853
6600	0,066	0,066048	3,784272
6700	0,067	0,06705	3,841695
6800	0,068	0,068053	3,899122
6900	0,069	0,069055	3,956553

7000	0,07	0,070057	4,013987
7100	0,071	0,07106	4,071426
7200	0,072	0,072062	4,128869
7300	0,073	0,073065	4,186316
7400	0,074	0,074068	4,243767
7500	0,075	0,07507	4,301222
7600	0,076	0,076073	4,358682
7700	0,077	0,077076	4,416146
7800	0,078	0,078079	4,473615
7900	0,079	0,079082	4,531088
8000	0,08	0,080086	4,588566